
International Journal of Theoretical Physics, Vol. 45, No. 12, December 2006 ( C© 2006)
DOI: 10.1007/s10773-006-9198-9

Subgroups of Hypercubic Group and Many
Electron States in Crystals

E. F. Kustov,1 V. G. Yarzhemsky,2,3 and V. I. Nefedov2

Received January 27, 2006; accepted May 1, 2006
Published Online: June 17, 2006

The point subgroups of index 2 of hypercubic group and their irreducible representations
are obtained. The elements of the hypercubic group are represented as rotation about two
axis. Possible physical meaning of hypercubic group for electron states is investigated.
The reduction relations for the representations of orthogonal group O4 on hypercubic
group are obtained. These relations are used for additional classification of electron
states in crystals.
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1. INTRODUCTION

The four dimensional cubic group (hypercubic group), which is a subgroup
of four dimensional unitary group U4, and of four- dimensional rotational group
O4 (Cornwell, 1984) is applied in nuclear lattice theories (Kogut, 1979; Wilson,
1974). The single-valued and double-valued irreducible representations (IRs)
of hypercubic group were obtained in Birman and Chen, (1971); Baake et al.,
(1982); Mandula et al., (1983); Mandula and Shpiz, (1984); Dai and Song, 2001.
Four-dimensional Bravais lattices and space-groups were obtained in Mackay and
Pawley, (1963); Neubuster et al., (1971); Florek and Lulek, (1993). Transforma-
tion properties of momentum operators on hypercubic groups were investigated
in Gockeler et al. (1996).

The four-dimensional cubic group is intermediate in the reduction of groups
U4 and O4 on crystallographic point groups and can be applied for additional
classification of many-electron states in crystals. The important property of 4-
groups is that they conserve the four-dimensional properties of 4-vectors.
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The four-dimensional point groups were also applied for the classification of
electron states in crystals (Kuzhukeev and Kustov, 1986; Kustov et al., 2005). The
symmetry groups of four-dimensional space, splitting into rotational groups R3

and R1, are very useful due to their isomorphism to discrete subgroups of Lorenz
group (Below et al., 1971) in physical applications. Also they can be considered
as groups of discrete space-time coordinates (Lorente, 1986).

For physical applications the reduction schemes from the four-dimensional
rotation group to hypercubic group and from hypercubic group to its subgroups
are required. But systematic data on this subject are still absent and it is the main
aim of the present work. Since we are interested in four-dimensional extensions
of other crystallographic point groups we use the crystallographic notations with
additional superscript 4. In this notations the hypercubic group is written as O4

h

and its point subgroups of index 2 as T 4
d , T 4

h , O4.
In the present work the elements of hypercubic group O4

h are expressed
in terms of rotations around two different axes. Making use of these relations
the reduction schemes of IRs of four-dimensional orthogonal group O4 on the
hypercubic group O4

h and its subgroups T 4
d , T 4

h , O4 are obtained. We present
also reduction relations from O4

h to the group Oθ
h = Oh + θOh (where θ is time-

inversion). Finally we show that classification of many-electron states in solids
result in additional quantum number - the index of IR of group O4

h .

2. THE SYMMETRY GROUP OF FOUR-DIMENSIONAL CUBE O4
h

The group O4
h includes permutations of four coordinate axes, i.e. group P4,

consisting of 24 elements and inversions of each of four axes, i.e. group P2× P2×
P2× P2, where P2 is the permutation group, consisting of 16 elements. Thus the
total number of elements in group O4

h is equals to 384.
The group O4

h may be represented as left coset decomposition with respect to
three dimensional cubic group Oh. Taking the inversion of fourth coordinate and
permutations Pi,4 of the forth axis with spatial coordinates (1, 2, 3) = (x, y, z) as
a left coset representatives, we can write:

O4
h = Oh +

3∑

i=1

Pi,4Oh + I4

(
Oh +

3∑

i=1

Pi,4Oh

)
(1)

Connecting the fourth axis with some physical properties one obtains different
physical applications of the four-dimensional cubic group. For instance, if the
quantization axis of triplet two-electron state is the fourth coordinate, the elements
Pi,4Oh correspond to rotations in which the spin direction is transformed as the
i-axis and the elements of Oh correspond to the case of fixed spins.

Let us consider four subgroups of O4
h , which we denote by superscripts (αβγ ).

The group O
(αβγ )
h is a direct product of four inversions, which are isomorphic to
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permutation groups P2 and permutation of three of the four coordinate axes P (αβγ )
3

:

O
(αβγ )
h = P2 × P2 × P2 × P (αβγ )

3
(2)

The permutations P3 may be applied to one of the following set of coordinate
axes, i.e. (αβγ ) = (123), (124), (143), (423). In the case of (αβγ ) = (123) one
can consider the fourth axis as a time. Thus the group O

(123)
h , which we denote as

Oθ
h ,is equal to Oh + θOh. It is the grey Shubnikov group, i.e. covering group for

all Shubnikov groups of cubic symmetry. Also the fourth axis may be considered
as axis of any property, say the quantization axis of spin. For example, the group
O

(124)
h corresponds to the structure with the spatial symmetry D4h with the four

fold axis in z-direction. Under the action of elements of this group the spin is
permuted with the four axial directions of the plane (x, y).

3. POINT SUBGROUPS OF O4
h

The elements and characters of the O4
h group are presented in Table I. The

relation between between present notations (see also Kustov et al., 2005) and that
of Baake et al., (1982) is also shown in Table I. Since the characters of IRs of
group O4

h are known (Birman and Chen, 1971; Baake et al., 1982; Mandula et al.,
1983; Mandula and Shpiz, 1984; Dai and Song, 2001; Neubuster et al., 1971;
Florek and Lulek, 1993; Kuzhukeev and Kustov, 1986; Kustov et al., 2005), its
subgroups can be easily identified with those group elements whose characters for
nontrivial one-dimensional IRs equal to unity. Thus we have three subgroups of
O4

h which are T 4
h , T 4

d and O4, and T 4 which is subgroup of T 4
h i.e. point subgroups

of Oh extended by permutation of the fourth axis with spatial coordinate axes.
The characters of single-valued IRs for groups O4, T 4

d , T 4
h and T 4 are presented in

Tables II, III, IV and V respectively. The reduction schemes for the IRs O4
h onto its

subgroups are presented in Table VI. A complete reduction scheme from group U4

via four-dimensional orthogonal group O4 and Lorenz group L is shown in Fig. 1.
Going over to the group Oθ

h (grey Shubnikov group Oh + θOh) it should be noted
that there are two possibilities for representations of Shubnikov groups (Bradley
and Cracknell, 1972). In the first approach one can consider Shubnikov groups in
the abstract sense and construct their characters by using of multiplication rules.
The second approach is based on the special feature of θ as time-reversal. In the
present work we apply the first approach only. Thus there are two extensions for
the elements of left coset θOh i.e. χ (θg) = ±χ (g).These extensions are marked
by corresponding superscripts in Table VI. IR of O4

h group are labelled according
to Kustov et al., (2005).
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Fig. 1. Reduction scheme from continuous groups
O4, R4 and L to four-dimensional point groups (de-
noted by superscript 4) and to point Shubnikov groups
(unitary subgroups are written in brackets). For nota-
tion O

(123)
h see text.

Table III. IRs of Subgroup T 4
d Defined by IR X3 of the Group O4

h and Numbers of Elements in
Classes. The Classes are Denoted According to O4

h Group

O4
h c1 c3 c5 c10 c17 c12 c13 c4 c18 c2 c6

T 4
d 1 12 6 24 32 24 24 6 6 12 32 12 1

X1 1 1 1 1 1 1 1 1 1 1 1 1 1
X2 1 −1 1 −1 1 −1 −1 1 1 −1 1 1 1
X3 2 0 2 0 −1 0 0 2 2 0 −1 2 2
X4 3 1 3 1 0 −1 −1 −1 −1 1 0 −1 3
X5 3 −1 3 −1 0 1 1 −1 −1 −1 0 −1 3
X6 3 1 −1 −1 0 1 −1 −3 1 1 0 1 3
X7 3 1 −1 −1 0 −1 1 1 −3 1 0 1 3
X8 3 −1 −1 1 0 −1 1 −3 1 −1 0 1 3
X9 3 −1 −1 1 0 1 −1 1 −3 −1 0 1 3
X10 4 2 0 0 1 0 0 0 0 −2 −1 0 −4
X11 4 −2 0 0 1 0 0 0 0 2 −1 0 −4
X12 6 0 −2 0 0 0 0 2 2 0 0 −2 6
X13 8 0 0 0 −1 0 0 0 0 0 1 0 −8
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Table IV. IRs of Subgroup O4 Defined by IR X4 of the Group O4
h and Numbers of Elements in

Classes. The Classes are Denoted According to O4
h Group

O4
h c1 c15 c5 c8 c17 c16 c13 c11 c18 c2 c6

O4 1 12 6 24 32 24 24 6 6 12 32 12 1
X1 1 1 1 1 1 1 1 1 1 1 1 1 1
X2 1 −1 1 −1 1 −1 −1 1 1 −1 1 1 1
X3 2 0 2 0 −1 0 0 2 2 0 −1 2 2
X4 3 1 3 1 0 −1 −1 −1 −1 1 0 −1 3
X5 3 −1 3 −1 0 1 1 −1 −1 −1 0 −1 3
X6 3 1 −1 −1 0 1 −1 3 −1 1 0 −1 3
X7 3 1 −1 −1 0 −1 1 −1 3 1 0 −1 3
X8 3 −1 −1 1 0 −1 1 3 −1 −1 0 −1 3
X9 3 −1 −1 1 0 1 −1 −1 3 −1 0 −1 3
X10 4 2 0 0 1 0 0 0 0 −2 −1 0 −4
X11 4 −2 0 0 1 0 0 0 0 2 −1 0 −4
X12 6 0 −2 0 0 0 0 −2 −2 0 0 2 6
X13 8 0 0 0 −1 0 0 0 0 0 1 0 −8

4. GEOMETRICAL REPRESENTATION OF O4
h.

It follows from the theory of two-parametric groups (Petrashen and Trifonov,
1967), that each element of group R4 may be represented as a product of two
rotations about two axes of a direct product group R3 × R3.

Table V. IRs of Subgroup T 4 Defined by IR X2 of the Group T 4
h and Numbers of

Elements in Classes. The Classes are Denoted According to O4
h Group

O4
h c1 c6 c2 c5 c13 c17 c18

T 4 1 1 6 6 6 6 6 16 16 16 16
X1 1 1 1 1 1 1 1 1 1 1 1
X2 1 1 1 1 1 1 1 ε ε2 ε ε2

X3 1 1 1 1 1 1 1 ε2 ε ε2 ε

X4 3 3 −1 −1 3 −1 −1 0 0 0 0
X5 3 3 −1 −1 −1 3 −1 0 0 0 0
X6 3 3 −1 −1 −1 −1 3 0 0 0 0
X7 3 3 3 −1 −1 −1 −1 0 0 0 0
X8 3 3 −1 3 −1 −1 −1 0 0 0 0
X9 4 −4 0 0 0 0 0 1 1 −1 −1
X10 4 −4 0 0 0 0 0 ε2 ε −ε2 −ε

X11 4 −4 0 0 0 0 0 ε ε2 −ε −ε2

ε = exp(2πi/3)
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Table VI. Reduction Relations for Subgroups of O4
h

O4
h O4 T 4

d T 4
h T 4 Oθ

h, θ = (123)

X1 X1 X1 X1 X1 A+
1g

X2 X2 X2 X1 X1 A+
2g

X3 X2 X1 X2 X1 A−
2u

X4 X1 X2 X2 X1 A−
1u

X5 X3 X3 X3 X2 E+
g

X6 X3 X3 X4 X2 E−
u

X7 X4 X4 X5 X3 A+
1g + E+

g

X8 X5 X5 X5 X3 A+
2g + E+

g

X9 X5 X4 X6 X3 A−
2u + E−

u

X10 X4 X5 X6 X3 A−
1u + E−

u

X11 X10 X10 X7 X8 A+
1g + T +

1u

X12 X11 X11 X7 X8 A−
2g + T +

2u

X13 X11 X10 X8 X8 A+
2u + T −

2g

X14 X10 X11 X8 X8 A+
1u + T −

1g

X15 X6 + X7 X12 X9 X4 + X5 T +
1g + T −

1u

X16 X8 + X9 X12 X9 X4 + X5 T +
2g + T −

2u

X17 X12 X8 + X9 X10 X6 + X7 T +
1g + T −

2u

X18 X12 X6 + X7 X10 X6 + X7 T +
2g + T −

1u

X19 X13 X13 X′
11 + X′′

11 X9 E−
g + T +

1u + T +
2u

X20 X13 X13 X′
12 + X′′

12 X9 E+
u + T −

2g + T −
1g

Thus each rotation of hypercube is represented as two rotations by an-
gles φ1 and φ2 about two axes and the character of any IR [j1, j2] of four-
dimensional orthogonal group may be calculated as a product of two characters
of R3.

χ [j1,j2] (φ1, φ2) = sin j1+j2+1
2 φ1

sin φ1

2

· sin j1−j2+1
2 φ2

sin φ2

2

(3)

The rotation angles for hypercubic group were determined as follows. It is
immediately verified that two IRs of O4: vector representation {10} (curly brackets
correspond to Young tables) and representation of antisymmetric tensor {11} are
irreducible in the subduction to O4

h and are equivalent to X11 and X15 respectively.
Hence it follows that the characters of these IRs are written in terms of rotational
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angles as follows:

χ (X11) = 4 cos
φ1

2
cos

φ2

2
(4)

χ (X15) = 4

(
cos2 φ1

2
+ cos2 φ2

2

)
− 2 (5)

Hence for each of pure rotation element of O4
h we have a system of two equation for

the determination of two angles. The resultant angles only for the proper rotations
are presented in Table VI.

The other elements of O4
h are obtained multiplying by one-dimensional

and three-dimensional inversions, since two-dimensional and four dimensional
inversions are proper rotation.

5. ATOMIC STATES IN CRYSTALS

The covering group for O4
h is the four-dimensional unitary group, U4, which

is connected with the direct product of two orthogonal groups O3 ⊗ O3 in three
dimensions. That is why the IRs of U4 are labelled by a pair of orbitals quantum
numbers [j1, j2] (Cornwell, 1984). Since the group O3 is isomorphic to SU2, the
group U4 has the subgroup of the direct product O3 ⊗ SU2. Hence, it follows that
any many-electron state with total orbital momentum L and total spin S belongs
to IR 	[L,S] = DL ⊗ DS of group O3 ⊗ O3. When this symmetry is reduced to
O3 this representation is reduced as:

	[L,S] =
∑

j

DJ , J = L + S,L + S − 1, L − S (6)

In crystal field these states, characterized by total momentum J are further reduced.
Since the total number of IRs of point groups is rather scant, the same IRs of point
group appear in the decomposition of states with the same J . Hence it follows
that additional quantum numbers required. The intermediate reduction from the
unitary group U4 to the hypercubic group makes possible to introduce addition
quantum numbers. This reduction scheme is written as (Kustov, 1975a, 1975b,
1977, 1979):

O4 ⊃ R4 → R3 × R3 ⊃ O4
h ⊃ O (7)

In the first step of reduction every IR of group O4 splits into two as follows
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Table VII. Classes of Group O4
h and Representation of its Proper

Rotational Elements in Terms of Rotation Aroun Two Axis

Class P8 P4 Number rotations

C1 {18} {14} 1 (E,E)
C2 {24} {22} 12 (C2, C2)
C3 {1422} {122} 12
C4 {24} {122} 12
C5 {1422} {14} 6 (E,C2)
C6 {24} {14} 1
C7 {1223} {14} 4
C8 {1223} {122} 24 (C2, C2)
C9 {162} {14} 4
C10 {1224} {122} 24
C11 {224} {122} 12 (Ck

4 , C−k
4 ) , k = 1, 3

C12 {42} {4} 48
C13 {42} {22} 12 (C2, E2)
C14 {224} {22} 24
C15 {144} {122} 12 (Ck

4 , Ck
4 ), k = 2

C16 {8} {4} 48 (C2, C
k
4 , )

C17 {1232} {13} 32 (Ck
3 , Ck

3 )

C18 {26} {13} 32 (Ck
3 , C−k

3 )
C19 {232} {13} 32
C20 {126} {13} 32

(Littlwood, 1948; Wybourne, 1973):

[j1, j2] → [j1, j2] + [j1,−j2] (8)

The second step of reduction results in two following replacements:

[j1, j2] →
[
j1 + j2

2

]
×

[
j1 − j2

2

]
(9)

[j1,−j2] →
[
j1 − j2

2

]
×

[
j1 + j2

2

]
(10)

The character of IRs of group O4 for the pure rotations of O4
h are easily

obtained making use of formula (3). To obtain the characters for rotations with
inversion, the character of the pure rotational element is multiplied by −1. The
character of conjugate representation differs for the rotations with inversion, i.e.
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Table VIII. Reduction of the IRs of Group O4 in Subduction From O4 to O4
h

O4 O4
h

[0] X1

[0∗] X4

[1] X11

[1∗] X14

[11] X15

[2] X7 + X18

[2∗] X10 + X17

[21] X19 + X20

[22] X5 + X6 + X16

[3] X11 + X13 + X19

[3∗] X12 + X14 + X20

[31] X8 + X9 + X15 + X16 + X17 + X18

[32] X12 + X13 + X19 + X20

[33] X2 + X3 + X15 + X16

[4] X1 + X3 + X5 + X7 + X15 + X16 + X18

[4∗] X2 + X4 + X6 + X10 + X15 + X16 + X17

[41] X11 + X12 + X13 + X14 + 2X19 + 2X20

[42] X7 + X8 + X9 + X10 + X16 + 2X17 + 2X18

[43] X11 + X12 + X13 + X14 + X19 + X20

[44] X1 + X4 + X5 + X6 + X15 + X16

[5] 2X11 + X13 + 2X19 + X20

[5∗] X12 + 2X14 + X19 + 2X20

[51] X5 + X6 + X7 + X8 + X9 + X10 + 3X15 + 2X16 + 2X17 + 2X18

[52] X11 + X12 + X13 + X14 + 3X19 + 3X20

[53] X7 + X8 + X9 + X10 + 2X15 + X16 + 2X17 + 2X18

[54] X11 + X14 + 2X19 + 2X20

[55] X5 + X6 + 2X15 + X16

[6] X1 + 2X7 + X8 + X9 + X15 + X16 + X17 + 3X18

[6∗] X4 + X8 + X9 + 2X10 + X15 + X16 + 3X17 + X18

[61] 2X11 + 2X12 + 2X13 + 2X14 + 4X19 + 4X20

[62] X1 + X2 + X3 + X4 + 2X5 + 2X6 + X7 + X8 + X9 + X10 + 3X15 + 4X16 + 2X17 + 2X18

[63] 2X11 + 2X12 + 2X13 + 2X14 + 3X19 + 3X20

[64] 2X7 + X8 + X9 + 2X10 + X15 + X16 + 3X17 + 3X18

[65] X11 + X12 + X13 + X14 + 2X19 + 2X20

[66] X1 + X2 + X3 + X4 + X5 + X6 + X15 + 2X16

[7] 3X11 + X12 + 2X13 + 3X19 + 2X20

[7∗] 2X12 + X13 + 3X14 + 2X19 + 3X20

[71] X2 + X3 + X5 + X6 + 2X7 + 2X8 + 2X9 + 2X10 + 4X15 + 4X16 + 4X17 + 4X18

[72] 2X11 + 3X12 + 3X13 + 2X14 + 5X19 + 5X20

[73] X1 + X2 + X3 + X4 + X5 + X6 + X7 + 2X8 + 2X9

+X10 + 4X15 + 4X16 + 3X17 + 3X18

[74] 2X11 + 2X12 + 2X13 + 2X14 + 4X19 + 4X20

[75] X7 + 2X8 + 2X9 + X10 + 2X15 + 2X16 + 3X17 + 3X18

[76] X11 + 2X12 + 2X13 + X14 + 2X19 + 2X20

[77] X2 + X3 + X5 + X6 + 2X15 + 2X16
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Fig. 2. Hypercubic classification of the state 3F of f 2 configuration in cubic crystal.

for these elements:

χ [j1, j2]∗ = −χ [j1, j2] (11)

The branching relations for the reduction of IRs of group O4 on the group
O4

h are presented in Table VIII.

6. EXAMPLE AND DISCUSSION

The example of application of reduction relations for the term 3F of f 2

configuration is shown in Fig. 1. If the spin and orbital parts are independent,
the total symmetry group of the state with L = 3 and S = 1 is the direct product
of two rotational groups R3 × R3. When the spin-orbit interaction is taken into
account the symmetry group is reduced to R3 and one obtains three states 3F4,
3F3, and 3F2, labelled by the total angular momentum J . In cubic crystal field
these wavefunctions are split on the states belonging to IRs of Oh group. There
are many repeating IRs in the final state of reduction and additional quantum
numbers are required. The hypercubic classification is shown on the right part of
this figure. The state with L = 3 and S = 1 belongs to the IR (Wybourne, 1973)
of four-dimensional orthogonal group. The reduction of this IR on the group O4

h

is shown in this figure. Note that when IRs X9 and X10 are reduced on Oh group



Subgroups of Hypercubic Group and Many Electron States in Crystals 2355

only odd IRs appear (see Table VI). In our case of two-electron configuration only
even IRs appear and IRs X9 and X10 are not shown in Fig. 2. It is seen from this
figure IRs T2g originate from IRs X16 or X18 of hypercube and their labels may be
used as additional quantum numbers as T2g (X16) and T2g (X18). Also repeating
IRs Eg originate from IRs X7 and X8 of hypercube and two repeating IRs may be
labelled as Eg(X7) and Eg(X8).

7. CONCLUSION

The characters of single-valued representations of hypercubic subgroups O4,
T 4

d , T 4
h and T 4 are obtained. Making use of representation of hypercubic group

elements as rotations around two axes we obtained the reduction relations for the
representation of the four-dimensional rotation group on the hypercubic group.
This relations are used to obtain a new hypercubic classification of many-electron
states. It is shown that hypercubic classification of many-electron states in crystals
results in additional quantum number—the index of IR of hypercubic group.
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